Exercise 63

Prove the formula for $(d / d x)\left(\cos ^{-1} x\right)$ by the same method as for $(d / d x)\left(\sin ^{-1} x\right)$.

Solution

Let $y=\cos ^{-1} x$. Then

$$
\begin{equation*}
\cos y=x . \tag{1}
\end{equation*}
$$

Differentiate both sides with respect to x.

$$
\frac{d}{d x}(\cos y)=\frac{d}{d x}(x)
$$

Use the chain rule to differentiate $y=y(x)$.

$$
(-\sin y) \frac{d y}{d x}=1
$$

Solve for $d y / d x$.

$$
\frac{d y}{d x}=-\frac{1}{\sin y}
$$

Draw the implied right triangle from equation (1) in order to determine the sine of y. Use the Pythagorean theorem to determine the missing side.

Therefore,

$$
\frac{d y}{d x}=-\frac{1}{\sqrt{1-x^{2}}}
$$

